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We simulate the quantum adiabatic algorithm (QAA) for the exact cover problem for sizes up to N ¼
256 using quantum Monte Carlo simulations incorporating parallel tempering. At large N, we find that

some instances have a discontinuous (first-order) quantum phase transition during the evolution of the

QAA. This fraction increases with increasing N and may tend to 1 for N ! 1.
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It is of great interest to know if an eventual quantum
computer could solve a broad range of hard ‘‘optimiza-
tion’’ problems more efficiently than a classical computer.
An important class is the NP-hard category [1]
(nondeterministic-polynomial-time-hard), for which it is
believed that all classical algorithms take a time which
grows exponentially with the problem size N.

The most promising approach to solving optimization
problems on a quantum computer seems to be the quantum
adiabatic algorithm (QAA), proposed by Farhi et al. [2].
The idea, which is related to quantum annealing [3], is that
one adds to a ‘‘problem’’ Hamiltonian,H P, whose ground
state represents a solution of a classical optimization prob-
lem, a noncommuting ‘‘driver’’ Hamiltonian, H D, so the
total Hamiltonian is

H ðsÞ ¼ ð1� sÞH D þ sH P; (1)

where sðtÞ is a time-dependent control parameter. H P is
expressed in terms of classical Ising spins taking values
�1, or equivalently in terms of the z components of the
Pauli matrices for each spin, �̂z

i . The simplest driver
Hamiltonian is then H D ¼ �P

N
i¼1 �̂

x
i where �̂x

i is the

x-component Pauli matrix.
The control parameter sðtÞ is 0 at t ¼ 0, so H ¼ H D,

which has a trivial ground state in which all 2N basis states
(in the �̂z basis) have equal amplitude. It then increases
with t, reaching 1 at t ¼ T , where T is the runtime of the
algorithm, at which pointH ¼ H P. If the time evolution
of sðtÞ is sufficiently slow, the process will be adiabatic.
Hence, starting the system in the ground state of H D, the
system will end up in the ground state of H P and the
problem is solved. The time T required to find the ground
state with significant probability is called the complexity.
The bottleneck of the QAA is likely to be at one or more
points where the energy gap from the ground state to the

first excited state becomes very small, possibly due to a
quantum phase transition.
Early numerical work [2,4] on very small systems, N �

24 (for a particular constraint satisfaction problem known
as ‘‘exact cover 3,’’ also called 1-in-3 sat), found that the
complexity scaled polynomially with size, roughly as N2,
which caused a good deal of excitement. However, this
power law complexity may be an artifact of the very small
sizes studied, so it is of great interest to determine whether
the complexity continues to be polynomial for much larger
sizes or whether a ‘‘crossover’’ to exponential complexity
is seen.
In previous work [5], we have used quantum

Monte Carlo (QMC) simulations to investigate much larger
sizes of the exact cover problem, up to N ¼ 128. We found
evidence that, while the median complexity is still poly-
nomial, an increasing fraction of instances became very
hard to equilibrate for the larger sizes. We have now
considerably improved the algorithm, borrowing tech-
niques from the spin glass field to speed up equilibration.
We have therefore been able to understand much better
these ‘‘troublesome’’ instances, and find that they have a
first-order quantum phase transition. Furthermore, we have
increased the range of sizes still further, up to N ¼ 256,
finding that the fraction instances with a first-order tran-
sition continues to increase with N, plausibly tending 1 for
N ! 1. The gap at a first-order phase transition is likely to
be exponentially small [6,7], and hence lead to exponential
complexity for the QAA.
We now describe the model and our results in more

detail. To make a comparison with the earlier work, we
study (essentially) the same model for H P used by Farhi
et al. [2]. This problem, known as exact cover, is a random
satisfiability problem, a class which is known to be NP
hard. In exact cover, there are N Ising spins and M
‘‘clauses’’ each of which involves three spins (chosen at
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random). The energy of a clause is zero if one spin is �1
and the other two are 1, and otherwise the energy is a
positive integer. The simplest Hamiltonian with this prop-
erty is [8]

H P ¼ 1

4

XM
�¼1

ð�̂z
�1

þ �̂z
�2

þ �̂z
�3

� 1Þ2; (2)

where �1, �2, and �3 are the three spins in clause �, and
the f�̂z

i gði ¼ 1; . . . ; NÞ are Pauli matrices. In the absence of
the driver Hamiltonian, the Pauli matrices can be replaced
by classical Ising spins Si taking values �1. An instance
has a ‘‘satisfying assignment’’ if there is at least one choice
for the spins where the total energy is zero. As the ratio
� � M=N is increased, there is a phase transition at �s

where the number of satisfying assignments goes to zero.
The version used by Farhi et al. considers only instances
with a unique satisfying assignment (USA), i.e., there is
only one state with energy 0. This has the advantage that
the gap �EðsÞ between the ground state and first excited
state is greater than zero in both limiting cases,H ¼ H D

and H ¼ H P, but will have a minimum at an intermedi-
ate value s ¼ s�. In addition, it ensures that we work close
to the satisfiability transition where the problem is particu-
larly hard [9]. Hence here, and in the earlier work [5], we
consider instances with a USA.

The method of generating instances with a USA is
described in Ref. [5]. For each size N, we choose the
number of clauses M which maximizes the probability of
finding a USA, see Table I. The actual number of spins
simulated N0, is somewhat less than N due to isolated sites
being omitted, and others that do not affect the complexity
are also ‘‘pruned off’’ [5]. The value of� � M=N seems to
be close to the critical value �s ’ 0:626 [10] for N ! 1.

In QMC, we simulate an effective classical model with
Ising spins Sið�Þ ¼ �1 in which � (0 � � < � � T�1) is
imaginary time. Following common practice, we discretize
imaginary time into L� ‘‘time slices’’ each representing
�� ¼ �=L� of imaginary time. We take �� ¼ 1.

As discussed previously [5], for ��E � 1 (where
�E � E1 � E0 is the energy gap), and � � �, the time-
dependent correlation function

Cð�Þ ¼ 1

N0L�

XN0

i¼1

XL�

�0¼1

hSið�0 þ �ÞSið�0Þi; (3)

is a sum of exponentials, i.e.,

Cð�Þ ¼ qþ X
n�1

An exp½�ðEn � E0Þ�	; (4)

where the An are constants and q, the spin glass order
parameter, is given by

q ¼ 1

N0
XN0

i¼1

hSii2: (5)

At large �, the sum in Eq. (4) is dominated by the term
corresponding to the first excited state (n ¼ 1), and so
�E � E1 � E0 can be obtained by fitting log½Cð�Þ � q	
against � for large �.
We have considerably improved the algorithm relative to

that in Ref. [5] by incorporating ‘‘parallel tempering’’
[11,12], which has been very successful in speeding up
simulations of spin glass systems. Whereas in spin glasses,
one simulates copies of the system at different, close-by
temperatures, in the quantum case, the copies are at differ-
ent values of the control parameter s.
As already mentioned, the focus of the present study is

to determine which instances have a first-order transition.
Parallel tempering is very good at equilibrating the system
on either side of the transition. However, it is still difficult
(i) to determine exactly where the transition occurs, be-
cause both phases are metastable in the region where they
are not the equilibrium state, and (ii) to accurately deter-
mine the minimum gap for first-order instances, because it
is so small. We have performed runs starting the spins both
from a random initial configuration and from the solution
of the problem Hamiltonian. If we start by ‘‘seeding’’ the
spins with the exact solution, we are confident that the
Monte Carlo simulation is in the correct phase for s close to
1. It is also in the correct phase for small s because
equilibration is easy in this region. Hence, if a long simu-
lation starting the spins from the exact solution produces a
sharp discontinuity, we feel that this is almost certainly the
correct behavior.
In order to investigate whether or not a first-order tran-

sition occurs, we focus on the spin glass order parameter q
defined in Eq. (5). The expectation value of q is always
nonzero because of terms linear in the �̂z (magnetic field
terms) in the Hamiltonian, Eq. (2). To determine the square
of the average without bias, we simulated two copies of the

spins at each value of s and evaluate hSii2 as hSiið1ÞhSiið2Þ. A
representative result for an instance with a first-order tran-
sition is shown in Fig. 1. Note the very rapid increase in q
over a very small range of s, and that the two curves on
each side of the jump are obviously displaced vertically
with respect to each other.
The dip before the jump clearly seen in Fig. 1 provides

clear evidence for a two-phase coexistence, and hence a
first-order transition, for the following reason. If both
copies are in the same phase, then the mean value of hSii
is the same in both copies. However, right at the first-order
transition, one copy can be in one phase (the low-q phase,
say) and the other copy in the other (high-q) phase. The
average value of hSii can have different signs in the two
phases for some sites i. Hence, the typical Hamming
distance between the spin configurations in the two copies

TABLE I. The sizes studied in the simulation.

N 16 32 64 128 192 256

M 12 23 44 86 126 166

� 0.7500 0.7188 0.6875 0.6719 0.6563 0.6484
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can be even greater (and so q even smaller) than when both
copies are in the low-q phase. In every instance where we
observed a sharp jump, this was proceeded by a dip. Hence,
we use the dip as a precise criterion for a first-order
transition.

Of course, even a first-order transition is rounded out for
a finite-size system. To estimate the size of the rounding,
we need to consider the two cases �Emin � T and
�Emin � T separately, where�Emin is the minimum value
of the gap at the transition. If �Emin � T, �s is the range
of s over which �E changes by an amount �Emin, whereas
if �Emin � T, �s is the range of s over which �E changes
by an amount equal to T. Hence,

�s ¼
�
�Eminð@�E@s Þ�1; ð�Emin � TÞ;
Tð@�E@s Þ�1; ð�Emin � TÞ: (6)

Figure 2 shows the finite-size rounding for an instance with
N ¼ 64, small enough that we can equilibrate through the
(first-order) transition. For � & 1024, the width of the
transition region increases as � � 1=T decreases, but for
� * 1024 the width is independent of �. For this instance,
we find�Emin ¼ 0:0021 as shown in the inset, so the width
of the rounding becomes independent of T when T � �E
as expected.

In Fig. 3, we plot the fraction of instances with a first-
order transition. For each size, we have studied Ninst ¼ 50
instances. If we denote the first-order fraction by r, then the

error bar in r is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� rÞ=ðNinst � 1Þp

. The figure shows
that r increases rapidly with N and, very plausibly, tends to
1 for N ! 1. We see that the first-order fraction is slightly
greater than a half for N ¼ 128. In our earlier work [5], we
found that the median complexity continued to be poly-
nomial up to N ¼ 128 (the largest size studied). However,
there is no contrast with the present work because, as
already noted in Ref. [8], the models used are slightly

different, and as a result, the crossover to a first-order
transition occurs at a slightly lower value of N in the
present model. The crossover to first order would have
been seen in the earlier model if somewhat larger sizes
had been studied.
Exponentially small gaps have been discussed before in

the context of the QAA. Some time ago, one of us [13]

FIG. 2 (color online). The main figure shows the spin glass
order parameter q, defined in Eq. (5), as a function of s for an
instance with N ¼ 64 which has a first-order transition. The
different curves are for different values of �. The inset shows the
energy gap �E as a function of s for � ¼ 2048, indicating that
�Emin ¼ 0:0021 (same value was found for � ¼ 1024 and
4096). From the main figure, one sees that the width of the
finite-size rounding increases with T � 1=� for T � �E but is
independent of T in the opposite limit T � �E, as expected
from Eq. (6). Note the expanded horizontal scale.

FIG. 3 (color online). The fraction of instances with a first-
order transition (defined in the way discussed in the text) as a
function of size. For each size, 50 instances were studied.

FIG. 1 (color online). An instance with a first-order transition
with N ¼ 128. Note the expanded horizontal scale.
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pointed out for a different problem, number partitioning,
that the minimum gap is exponentially small, because of a
transition between the states that are ‘‘localized’’ and
‘‘extended’’ in the computational basis.

Altshuler et al. [6] predict an exponentially small gap at
large N for exact cover. Performing perturbation theory
away from s ¼ 1, they argue that there will be a level
crossing between two ‘‘localized’’ states for s close to 1,
at which point the ground state configuration changes
abruptly. In our numerics, there is a big variation in the
location of the first-order transition for a given size, but we
do not detect a systematic shift towards s ¼ 1 as the size

increases. However, Altshuler et al. predict that 1� s

N�1=8, which is probably too slow to be visible in our data.
It will be interesting to investigate in future work whether
the first-order transition found here is due to the mecha-
nism they propose.

Farhi et al. [14] used a continuous imaginary time QMC
method to study a very similar problem to ours, except that
two solutions far away in Hamming space are ‘‘planted’’
into the Hamiltonian. This ensures that there is a finite
probability of a first-order transition where the equilibrium
state changes from one planted solution to another. By
contrast, our work does nothing explicit to impose a first-
order transition.

Jörg et al. [15] studied quantum annealing for the quan-
tum random energy model (REM), the classical version of
which [16] has a ‘‘1-step replica symmetry breaking’’ (also
called a ‘‘random first-order’’) transition. Following
Goldschmidt [17], they find a discontinuous quantum tran-
sition and argue that this leads to an exponentially small
gap. They also observed that an exponentially small gap is
seen in quantum versions of several models with random
first-order transitions and suggested that this may be the
general feature of all such models, including satisfiability
[10,18]. However, the classical REM has zero spin glass
order parameter q in the disordered phase [16] whereas
classical random satisfiability models have lower symme-
try because q is always nonzero due to the terms linear in
�̂z in Eq. (2). Consequently, it is not obvious to us that the
first-order quantum transition observed here is due to the
same mechanism as that found [15] for the quantum REM.
Very recently, a first-order transition has also been found in
another model by Jörg et al. [19].

To conclude, we have a found a crossover to a first-order
quantum phase transition during the evolution of the QAA
for instances of exact cover with a unique satisfying assign-
ment when the size becomes greater than about 100. It is
possible that the complexity for random instances of exact
cover could be different. We are therefore studying instan-
ces of exact cover with the USA constraint removed, and
will also study other models in addition to exact cover.
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